Inching Towards Shannon’s Oblivion

SkynetFollowing Bill Joy’s concerns over the future world of nanotechnology, biological engineering, and robotics in 2000’s Why the Future Doesn’t Need Us, it has become fashionable to worry over “existential threats” to humanity. Nuclear power and weapons used to be dreadful enough, and clearly remain in the top five, but these rapidly developing technologies, asteroids, and global climate change have joined Oppenheimer’s misquoted “destroyer of all things” in portending our doom. Here’s Max Tegmark, Stephen Hawking, and others in Huffington Post warning again about artificial intelligence:

One can imagine such technology outsmarting financial markets, out-inventing human researchers, out-manipulating human leaders, and developing weapons we cannot even understand. Whereas the short-term impact of AI depends on who controls it, the long-term impact depends on whether it can be controlled at all.

I almost always begin my public talks on Big Data and intelligent systems with a presentation on industrial revolutions that progresses through Robert Gordon’s phases and then highlights Paul Krugman’s argument that Big Data and the intelligent systems improvements we are seeing potentially represent a next industrial revolution. I am usually less enthusiastic about the timeline than nonspecialists, but after giving a talk at PASS Business Analytics Friday in San Jose, I stuck around to listen in on a highly technical talk concerning statistical regularization and deep learning and I found myself enthused about the topic once again. Deep learning is using artificial neural networks to classify information, but is distinct from traditional ANNs in that the systems are pre-trained using auto-encoders to have a general knowledge about the data domain. To be clear, though, most of the problems that have been tackled are “subsymbolic” for image recognition and speech problems.… Read the rest

Computing the Madness of People

Bubble playing cardThe best paper I’ve read so far this year has to be Pseudo-Mathematics and Financial Charlatanism: The Effects of Backtest Overfitting on Out-of-sample Performance by David Bailey, Jonathan Borwein, Marcos López de Prado, and Qiji Jim Zhu. The title should ring alarm bells with anyone who has ever puzzled over the disclaimers made by mutual funds or investment strategists that “past performance is not a guarantee of future performance.” No, but we have nothing but that past performance to judge the fund or firm on; we could just pick based on vague investment “philosophies” like the heroizing profiles in Kiplingers seem to promote or trust that all the arbitraging has squeezed the markets into perfect equilibria and therefore just use index funds.

The paper’s core tenets extend well beyond financial charlatanism, however. They point out that the same problem arises in drug discovery where main effects of novel compounds may be due to pure randomness in the sample population in a way that is masked by the sample selection procedure. The history of mental illness research has similar failures, with the head of NIMH remarking that clinical trials and the DSM for treating psychiatric symptoms is too often “shooting in the dark.”

The core suggestion of the paper is remarkably simple, however: use held-out data to validate models. Remarkably simple but apparently rarely done in quantitative financial analysis. The researchers show how simple random walks can look like a seasonal price pattern, and how by sending binary signals about market performance to clients (market will rise/market will fall) investment advisors can create a subpopulation that thinks they are geniuses as other clients walk away due to losses. These rise to the level of charlatanism but the problem of overfitting is just one of pseudo-mathematics where insufficient care is used in managing the data.… Read the rest

Saving Big Data from the Zeros

ZerosBecause of the hype cycle, Big Data inevitably attracts dissenters who want to deflate a bit the lofty expectations that are built around new technologies that appear mystifying to those on the outside of the Silicon Valley machine. The first response is generally “so what?” and that there is nothing new here, just rehashing efforts like grid computing and Beowulf and whatnot. This skepticism is generally a healthy inoculation against aggrandizement and any kind of hangover from unmet expectations. Hence, the NY Times op-ed from April 6th, Eight (No, Nine!) Problems with Big Data should be embraced for enumerating eight or nine different ways that Big Data technologies, algorithms and thinking might be stretching the balloon of hope towards a loud, but ineffectual, pop.

The eighth of the list bears some scrutiny, though. The authors, who I am not familiar with, focus on the overuse of trigrams in building statistical language models. And they note that language is very productive and that even a short sentence from Rob Lowe, “dumbed-down escapist fare,” doesn’t appear in the indexed corpus of Google. Shades of “colorless green ideas…” from Chomsky, but an important lesson in how to manage the composition of meaning. Dumbed-down escapist fare doesn’t translate well back-and-forth through German via the Google translate capability. For the authors, that shows the failure of the statistical translation methodology linked to Big Data, and ties in to their other concerns about predicting rare occurrences or even, in the case of Lowe’s quote, zero occurrences.

In reality, though, these methods of statistical translation through parallel text learning date to the late 1980s and reflect a distinct journey through ways of thinking about natural language and computing.… Read the rest

Parsimonious Portmanteaus

portmanteauMeaning is a problem. We think we might know what something means but we keep being surprised by the facts, research, and logical difficulties that surround the notion of meaning. Putnam’s Representation and Reality runs through a few different ways of thinking about meaning, though without reaching any definitive conclusions beyond what meaning can’t be.

Children are a useful touchstone concerning meaning because we know that they acquire linguistic skills and consequently at least an operational understanding of meaning. And how they do so is rather interesting: first, presume that whole objects are the first topics for naming; next, assume that syntactic differences lead to semantic differences (“the dog” refers to the class of dogs while “Fido” refers to the instance); finally, prefer that linguistic differences point to semantic differences. Paul Bloom slices and dices the research in his Précis of How Children Learn the Meanings of Words, calling into question many core assumptions about the learning of words and meaning.

These preferences become useful if we want to try to formulate an algorithm that assigns meaning to objects or groups of objects. Probabilistic Latent Semantic Analysis, for example, assumes that words are signals from underlying probabilistic topic models and then derives those models by estimating all of the probabilities from the available signals. The outcome lacks labels, however: the “meaning” is expressed purely in terms of co-occurrences of terms. Reconciling an approach like PLSA with the observations about children’s meaning acquisition presents some difficulties. The process seems too slow, for example, which was always a complaint about connectionist architectures of artificial neural networks as well. As Bloom points out, kids don’t make many errors concerning meaning and when they do, they rapidly compensate.… Read the rest

Algorithmic Aesthetics

Jared Tarbell’s work in algorithmic composition via processing.org continues to amaze me. See more, here. The relatively compact descriptions of complex landscapes lend themselves to treatment as aesthetic phenomena where the scale of the grammars versus the complexity of the results asks the question what is art and how does it relate to human neurosystems?

 

 … Read the rest

Novelty in the Age of Criticism

Gary Cutting from Notre Dame and the New York Times knows how to incite an intellectual riot, as demonstrated by his most recent The Stone piece, Mozart vs. the Beatles. “High art” is superior to “low art” because of its “stunning intellectual and emotional complexity.” He sums up:

My argument is that this distinctively aesthetic value is of great importance in our lives and that works of high art achieve it much more fully than do works of popular art.

But what makes up these notions of complexity and distinctive aesthetic value? One might try to enumerate those values or create a list. Or, alternatively, one might instead claim that time serves as a sieve for the values that Cutting is claiming make one work of art superior to another, thus leaving open the possibility for the enumerated list approach to be incomplete but still a useful retrospective system of valuation.

I previously argued in a 1994 paper (published in 1997), Complexity Formalisms, Order and Disorder in the Structure of Art, that simplicity and random chaos exist in a careful balance in art that reflects our underlying grammatical systems that are used to predict the environment. And Jürgen Schmidhuber took the approach further by applying algorithmic information theory to novelty seeking behavior that leads, in turn, to aesthetically pleasing models. The reflection of this behavioral optimization in our sideline preoccupations emerges as art, with the ultimate causation machine of evolution driving the proximate consequences for men and women.

But let’s get back to the flaw I see in Cutting’s argument that, in turn, fits better with Schmidhuber’s approach: much of what is important in art is cultural novelty. Picasso is not aesthetically superior to the detailed hyper-reality of Dutch Masters, for instance, but is notable for his cultural deconstruction of the role of art as photography and reproduction took hold.… Read the rest

Singularity and its Discontents

Kimmel botIf a machine-based process can outperform a human being is it significant? That weighty question hung in the background as I reviewed Jürgen Schmidhuber’s work on traffic sign classification. Similar results have emerged from IBM’s Watson competition and even on the TOEFL test. In each case, machines beat people.

But is that fact significant? There are a couple of ways we can look at these kinds of comparisons. First, we can draw analogies to other capabilities that were not accessible by mechanical aid and show that the fact that they outperformed humans was not overly profound. The wheel quickly outperformed human legs for moving heavy objects. The cup outperformed the hands for drinking water. This then invites the realization that the extension of these physical comparisons leads to extraordinary juxtapositions: the airline really outperformed human legs for transport, etc. And this, in turn, justifies the claim that since we are now just outperforming human mental processes, we can only expect exponential improvements moving forward.

But this may be a category mistake in more than the obvious differentiator of the mental and the physical. Instead, the category mismatch is between levels of complexity. The number of parts in a Boeing 747 is 6 million versus one moving human as the baseline (we could enumerate the cells and organelles, etc., but then we would need to enumerate the crystal lattices of the aircraft steel, so that level of granularity is a wash). The number of memory addresses in a big server computer is 64 x 10^9 or higher, with disk storage in the TBs (10^12). Meanwhile, the human brain has 100 x 10^9 neurons and 10^14 connections. So, with just 2 orders of magnitude between computers and brains versus 6 between humans and planes, we find ourselves approaching Kurzweil’s argument that we have to wait until 2040.… Read the rest

Methodical Play

imageMy fourteen-year-old interviewed a physicist yesterday. I had the privilege of being home over the weekend and listened in; my travel schedule has lately been brutal, with the only saving grace being moments like right now en route to Chicago when I can collapse into reading and writing for a few whitenoise-washed moments. And the physicist who was once his grandfather said some remarkable things:

  • Physics consists of empirical layers of untruth
  • The scientific method is never used as formulated
  • Schools, while valuable, won’t teach how to be a scientist
  • The institutions of physics don’t support the creativity required to be a scientist

Yet there was no sense of anger or disillusionment in these statements, just a framing of the distinctions between the modern social model surrounding what scientists do and the complex reality of how they really do their work.

The positives were that play is both the essential ingredient and the missing determinant of the real “scientific method.” Mess around, try to explain, mess around some more. And what is all that play getting this remarkable octogenarian? Possible insights into the unification of electromagnetism and the strong nuclear force. The interview journey passed from alignment of quarks to the beams of neutron stars, igniting the imaginations of all the minds on the call.

But if there is no real large-scale method to this madness, what might we conclude about the rationality of the process of science? I would advocate that the algorithmic model of inference is perhaps the best (and least biased) way of approaching the issue of scientific method. By constantly reshuffling the available parameters and testing the compressibility of models, play is indistinguishable from science when the play pivots on best explanation.… Read the rest

Curiouser and Curiouser

georgeJürgen Schmidhuber’s work on algorithmic information theory and curiosity is worth a few takes, if not more, for the researcher has done something that is both flawed and rather brilliant at the same time. The flaws emerge when we start to look deeply into the motivations for ideas like beauty (is symmetry and noncomplex encoding enough to explain sexual attraction? Well-understood evolutionary psychology is probably a better bet), but the core of his argument is worth considering.

If induction is an essential component of learning (and we might suppose it is for argument’s sake), then why continue to examine different parameterizations of possible models for induction? Why be creative about how to explain things, like we expect and even idolize of scientists?

So let us assume that induction is explained by the compression of patterns into better and better models using an information theoretic-style approach. Given this, Schmidhuber makes the startling leap that better compression and better models are best achieved by information harvesting behavior that involves finding novelty in the environment. Thus curiosity. Thus the implementation of action in support of ideas.

I proposed a similar model to explain aesthetic preferences for mid-ordered complex systems of notes, brush-strokes, etc. around 1994, but Schmidhuber’s approach has the benefit of not just characterizing the limitations and properties of aesthetic systems, but also justifying them. We find interest because we are programmed to find novelty, and we are programmed to find novelty because we want to optimize our predictive apparatus. The best optimization is actively seeking along the contours of the perceivable (and quantifiable) universe, and isolating the unknown patterns to improve our current model.… Read the rest