Tagged: general ai

The Obsessive Dreyfus-Hawking Conundrum

I’ve been obsessed lately. I was up at 5 A.M. yesterday and drove to Ruidoso to do some hiking (trails T93 to T92, if interested). The San Augustin Pass was desolate as the sun began breaking over, so I inched up into triple digit speeds in the M6. Because that is what the machine is made for. Booming across White Sands Missile Range, I recalled watching base police work with National Park Rangers to chase oryx down the highway while early F117s practiced touch-and-gos at Holloman in the background, and then driving my carpool truck out to the high energy laser site or desert ship to deliver documents.

I settled into Starbucks an hour and a half later and started writing on ¡Reconquista!, cranking out thousands of words before trying to track down the trailhead and starting on my hike. (I would have run the thing but wanted to go to lunch later and didn’t have access to a shower. Neither restaurant nor diners deserve an après-run moi.) And then I was on the trail and I kept stopping and taking plot and dialogue notes, revisiting little vignettes and annotating enhancements that I would later salt in to the main text over lunch. And I kept rummaging through the development of characters, refining and sifting the facts of their lives through different sets of sieves until they took on both a greater valence within the story arc and, often, more comedic value.

I was obsessed and remain so. It is a joyous thing to be in this state, comparable only to working on large-scale software systems when the hours melt away and meals slip as one cranks through problem after problem, building and modulating the subsystems until the units begin to sing together like a chorus. In English, the syntax and semantics are less constrained and the pragmatics more pronounced, but the emotional high is much the same.

With the recent death of Hubert Dreyfus at Berkeley it seems an opportune time to consider the uniquely human capabilities that are involved in each of these creative ventures. Uniquely, I suggest, because we can’t yet imagine what it would be like for a machine to do the same kinds of intelligent tasks. Yet, from Stephen Hawking through to Elon Musk, influential minds are worried about what might happen if we develop machines that rise to the level of human consciousness. This might be considered a science fiction-like speculation since we have little basis for conjecture beyond the works of pure imagination. We know that mechanization displaces workers, for instance, and think it will continue, but what about conscious machines?

For Dreyfus, the human mind is too embodied and situational to be considered an encodable thing representable by rules and algorithms. Much like the trajectory of a species through an evolutionary landscape, the mind is, in some sense, an encoded reflection of the world in which it lives. Taken further, the evolutionary parallel becomes even more relevant in that it is embodied in a sensory and physical identity, a product of a social universe, and an outgrowth of some evolutionary ping pong through contingencies that led to greater intelligence and self-awareness.

Obsession with whatever cultivars, whatever traits and tendencies, lead to this riot of wordplay and software refinement is a fine example of how this moves away from the fears of Hawking and towards the impossibilities of Dreyfus. We might imagine that we can simulate our way to the kernel of instinct and emotion that makes such things possible. We might also claim that we can disconnect the product of the effort from these internal states and the qualia that defy easy description. The books and the new technologies have only desultory correspondence to the process by which they are created. But I doubt it. It’s more likely that getting from great automatic speech recognition or image classification to the general AI that makes us fearful is a longer hike than we currently imagine.

Inching Towards Shannon’s Oblivion

SkynetFollowing Bill Joy’s concerns over the future world of nanotechnology, biological engineering, and robotics in 2000’s Why the Future Doesn’t Need Us, it has become fashionable to worry over “existential threats” to humanity. Nuclear power and weapons used to be dreadful enough, and clearly remain in the top five, but these rapidly developing technologies, asteroids, and global climate change have joined Oppenheimer’s misquoted “destroyer of all things” in portending our doom. Here’s Max Tegmark, Stephen Hawking, and others in Huffington Post warning again about artificial intelligence:

One can imagine such technology outsmarting financial markets, out-inventing human researchers, out-manipulating human leaders, and developing weapons we cannot even understand. Whereas the short-term impact of AI depends on who controls it, the long-term impact depends on whether it can be controlled at all.

I almost always begin my public talks on Big Data and intelligent systems with a presentation on industrial revolutions that progresses through Robert Gordon’s phases and then highlights Paul Krugman’s argument that Big Data and the intelligent systems improvements we are seeing potentially represent a next industrial revolution. I am usually less enthusiastic about the timeline than nonspecialists, but after giving a talk at PASS Business Analytics Friday in San Jose, I stuck around to listen in on a highly technical talk concerning statistical regularization and deep learning and I found myself enthused about the topic once again. Deep learning is using artificial neural networks to classify information, but is distinct from traditional ANNs in that the systems are pre-trained using auto-encoders to have a general knowledge about the data domain. To be clear, though, most of the problems that have been tackled are “subsymbolic” for image recognition and speech problems. Still, the improvements have been fairly impressive based on some pretty simple ideas. First, the pre-training is accompanied by systematic bottlenecking of the number of nodes that can be used for learning. Second, the amount that each fires is kept low to avoid overfitting to nodes with dominating magnitudes. Together, the auto-encoders learn the patterns without training and can then be trained faster and easier to associate those patterns with classes.

I still have my doubts concerning the threat timeline, however. For one, these are mostly sub-symbolic systems that are not capable of the kinds of self-directed system modifications that many fear can lead to exponential self-improvement. Second, the tasks that are seeing improvements are not new but just relatively well-known classification problems. Finally, the improvements, while impressive, are incremental improvements. There is probably a meaningful threat profile that can convert into a decision tree for when action is needed. For global climate change there are consensus estimates about sea level changes for instance. For Evil AI I think we need to wait for a single act of machine intelligence out-of-control before spending excessively on containment, policy, or regulation. In the meantime, though, keep a close eye on your laptop.

And then there’s the mild misanthropy of Claude Shannon, possibly driven by living too long in New Jersey:

I visualize a time when we will be to robots what dogs are to humans, and I’m rooting for the machines.